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Fossil feathers often preserve evidence of melanosomes—micrometre-scale

melanin-bearing organelles that have been used to infer original colours

and patterns of the plumage of dinosaurs. Such reconstructions acknowl-

edge that evidence from other colour-producing mechanisms is presently

elusive and assume that melanosome geometry is not altered during fos-

silization. Here, we provide the first test of this assumption, using high

pressure–high temperature autoclave experiments on modern feathers to

simulate the effects of burial on feather colour. Our experiments show that

melanosomes are retained despite loss of visual evidence of colour and com-

plete degradation of other colour-producing structures (e.g. quasi-ordered

arrays in barbs and the keratin cortex in barbules). Significantly, however,

melanosome geometry and spatial distribution are altered by the effects

of pressure and temperature. These results demonstrate that reconstruc-

tions of original plumage coloration in fossils where preserved features of

melanosomes are affected by diagenesis should be treated with caution.

Reconstructions of fossil feather colour require assessment of the extent of

preservation of various colour-producing mechanisms, and, critically, the

extent of alteration of melanosome geometry.
1. Introduction
Coloration is one of the most elusive aspects of the biology of ancient organ-

isms. Recent discoveries of melanosomes preserved in fossil feathers [1] and

biophotonic nanostructures in the cuticle of fossil insects [2], however, confirm

the potential of the fossil record to illuminate the evolution of colour and

visual signalling strategies. Previous studies of the coloration of fossil birds

and non-avian dinosaurs were based on morphological and/or chemical

evidence for the presence of melanin [3–8]. Other pigments and colour-

producing nanostructures generate colour in the feathers of many extant

birds and can modify colour generated by melanosomes [9], but fossil evidence

of these mechanisms is elusive; the relative preservation potential of the various

colour-producing mechanisms in feathers is unknown. Several studies have

inferred the original coloration of fossil feathers by comparing the preserved

geometry and/or spatial arrangement of melanosomes to those in extant

analogues [4–6,8,10,11]. These reconstructions assume that data from fossil

and modern feathers can be compared directly, but the fidelity with which

melanosomes are preserved is unknown. Critically, the impact of burial on

melanosome geometry has not been investigated. These issues have significant

implications for reconstructions of original plumage coloration in fossils: sedi-

ments hosting melanosome-bearing fossil feathers vary in their burial history

(see the electronic supplementary material, table S1).
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The morphology and chemistry of fossil tissues are sub-

ject to taphonomic overprints involving the effects of decay,

burial and weathering; many of these processes are amenable

to experimental testing. Artificial maturation techniques can

simulate the chemical and morphological effects of burial

on integumentary tissues [12,13], including how colour-

generating ultrastructures are altered [14]; elevated pressures

and temperatures in experiments accelerate geochemical

reactions that occur at lower pressures and temperatures

over longer geological timescales [15] (see the electronic

supplementary material). We employed high pressure–high

temperature autoclave experiments to test, for the first time,

the effect of burial on feather ultrastructure and to identify

constraints on melanosome-based reconstructions of fossil

feather colour. We focused on changes in visual colour and

morphology and, in particular, on changes in melanosome

geometry as this is an important contributor to colour in

fossil feathers [6,11].
2. Material and methods
Melanosome-bearing feathers were selected to represent diverse

hues, colour-producing mechanisms and taxa within Neornithes;

melanosomes do not produce the hue observed in the feathers

with biophotonic nanostructures or non-melanin pigments

(figure 1 and table 1; electronic supplementary material, S1).

Contour feathers were dissected from dried specimens held by

the Yale Peabody Museum of Natural History. Table 1 summar-

izes details of the taxa examined, feather location on the body

and the colour-generating mechanism.

Feathers were wrapped in aluminium foil and inserted into

an autoclave pressurized using Ar gas at 2008C, 250 bar and

2508C, 250 bar; each experiment lasted 24 h (see the electronic

supplementary material). Fresh and experimentally matured

feathers were examined using a FEI XL-30 ESEM-FEG SEM

(see the electronic supplementary material). Changes in hue

were assessed visually. Long and short axes of between 20 and

40 melanosomes were measured from each specimen. Differences

in the dimensions of fresh and experimentally matured feather

samples from each taxon were tested using one-way analysis of

variance (ANOVA).
3. Results
During the 2508C, 250 bar treatment, the hue of all fea-

thers changed to black regardless of the colour-generating

mechanism (figure 1a,d,g,j,m,p; electronic supplementary

material, figure S1); the black hue occluded original pattern-

ing (figure 2). This alteration was accompanied by complete

degradation of the barb cortex and quasi-ordered biophoto-

nic nanostructures (figure 1b,c,e,f; electronic supplementary

material, figure S1) and reduction in the dimensions of

barbs, barbules and barb cortices (see the electronic sup-

plementary material, table S2). Eumelanosomes (figure 1c,f;
electronic supplementary material, figure S1) and phaeomela-

nosomes (figure 1i,l,o,r) survived the experiments; they were

usually visible on transverse fractured sections of barbs and

barbules but rarely on the feather surface. Importantly, the

geometry of the melanosomes changed markedly during

the experiments. Long and short axes decreased in length

by 18.5+ 9.2% and 20+ 7.9%, respectively (table 2); differ-

ences between fresh and experimentally treated samples are

statistically significant for all taxa (table 2).
During the 2008C, 250 bar treatment, some feathers retained

visual evidence of the original hues and quasi-ordered nanos-

tructures were incompletely degraded (see the electronic

supplementary material, figure S2). The geometry of melano-

somes was altered less than during the 2508C, 250 bar

treatment (see the electronic supplementary material, table S3):

long and short axes decreased in length by 7.6+4.6% and

12.5+7.9%, respectively.
4. Discussion
Our experiments demonstrate that modern feathers character-

ized by different hues and colour-generating mechanisms

follow a convergent degradation pathway under the combined

effects of elevated pressure and temperature. Melanosomes

are the only colour-producing features that resist degrada-

tion; as with other anatomical features of feathers, however,

their geometry is altered. This alteration characterizes melano-

somes from all feathers investigated herein regardless of

taxonomy and melanosome type. These results—preferential

preservation of melanosomes and alteration of their original

geometry—have significant implications for studies of fossil

feather colour. The extent to which melanosome geometry is

altered varies under different temperature regimes: diagenetic

contraction is greater at higher temperature. This may reflect

dehydration during condensation/polymerization reactions

[12]. Combining such experimental data with information on

the burial history of feather-bearing biotas will allow the

extent of diagenetic alteration of melanosomes to be predicted;

a similar approach has been used in investigations of structural

colour in fossil insects [14]. In general, melanosomes in fossil

feathers from sediments characterized by deep burial (and/

or hydrothermal alteration) should be more degraded than

those buried to shallow depths. The burial history of the

Yixian Formation (Cretaceous, China) indicates that the Jehol

biota experienced elevated temperatures relative to other

important feather-bearing biotas, e.g. Messel, Florissant and

the Fur Formation (see the electronic supplementary material,

table S2). Notably, our results show that individual melano-

somes from a monochromatic feather region vary in the

extent to which their geometry is altered (table 2). Future

studies are needed to constrain the extent of this variation

under different burial regimes and for different taxa.

Reconstructions of original plumage colour will be most

accurate in cases where fossil feathers lack evidence of ther-

mal maturation. Our experiments reveal that alteration of

keratinous feather structures and melanosomes occurs in

tandem, but to different extents. This difference explains

certain distinctive features of fossil feathers as taphonomic

artefacts that may serve as indicators of alteration. Many

fossil melanosomes are preserved as external moulds within

an amorphous organic matrix (which presumably represents

the degraded remains of the keratinous feather medulla and

cortex (e.g. fig. 1h– f in [6]), whereas others are preserved as

discrete, three-dimensional bodies (e.g. fig. 1b in [1]). These

different preservational modes can yield disparate colour

predictions for the same feather region [5], possibly because

the organic matrix containing the melanosome moulds has

contracted to a greater extent than the melanosomes. Even

where preserved as three-dimensional bodies, melanosomes

can exhibit microfractures (e.g. fig. 1d in [6]) that may indicate

diagenetic contraction.
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Figure 1. Effect of temperature (2508C) and pressure (250 bar) on feather colour. (a – c) Fresh and (d – f ) experimentally treated Sialia sialis feathers. Melanosomes
(arrow, (a)) survive in rami of treated feathers ( f ) but the keratin cortex (C) and quasi-ordered nanostructure (Q) are degraded. (g – i) Fresh and ( j – l ) exper-
imentally treated Columba livia feathers. Note melanosomes within barbules of treated feathers (l ). (m – o) Fresh and ( p – r) experimentally treated Carduelis
carduelis feathers. Melanosomes (arrows in (o,r)) line ramus void space. Scale bars, (a,d,g,j,m,p) 500 mm, (b) 20 mm, (c,f,i,l,o,r) 5 mm, (e,h,k,n,q) 10 mm,
inset in (a,d,g,j,m,p) 5 mm.
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Figure 2. Degradation of melanosome-based colour patterning in Taeniopy-
gia guttata (a – c) nape and (d – f ) flank feathers. (a,d) Fresh, (b,c,e,f )
feathers treated to (b,e) 2008C 250 bar and (c,f ) 2508C 250 bar. Scale
bars, 2 mm.
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Our experiments highlight additional issues relating

to study of fossil feather colour. Experimentally treated

feathers can exhibit melanosomes on transverse fractured sec-

tions despite amorphous surface textures, supporting the

hypothesis [11] that the absence of visible melanosomes in

fossil feathers exhibiting an amorphous organic layer may

be a taphonomic artefact and not indicative of light-toned

coloration. Uniform tones in some fossil feathers may also

be artefacts; original patterning is obliterated by elevated

pressure and temperature. Survival of patterning in fossil

feathers indicates relatively mild burial conditions and/or

complete degradation of the keratin feather matrix, in which

cases the presence/absence of melanosomes generates dif-

ferences in tone. Except for ordered melanosome arrays

[10,11], biophotonic nanostructures are unknown in fossil

feathers. This may reflect a real absence in the living organism,

a taphonomic artefact or an inability to recognize partially

degraded examples in fossils. Our results document intermedi-

ate stages in the degradation of biophotonic nanostructures

(e.g. electronic supplementary material, figure S1). Identifi-

cation of similar features in fossil feathers will yield more

accurate predictions of original colour.

Reconstructions of original plumage colour in fossils

to date have relied on the assumption that the original geo-

metry and density of melanosomes is preserved [5,6,15].

Future modelling of the relationship between melanosome

geometry and feather colour [5,6,11] will inform on how

much deviation from a particular geometry is required to

produce a different colour. Incorporating evidence of other

http://rsbl.royalsocietypublishing.org/
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colour-producing mechanisms into plumage colour recon-

structions requires understanding of their chemical and

anatomical degradation. Even so, the presence/absence and

type (i.e. eu-/phaeomelanosome) of fossilized melanosomes

is sufficient to allow general inferences regarding original

hue and, more importantly, colour patterning in fossil

specimens, providing evidence of the functional evolution

of feathers and communication strategies among birds

and non-avian dinosaurs. Future targets for reconstruction

include different growth stages and sexes of the same fossil

taxon, and representatives of different ecologies from the

same biota. Such investigations will yield critical data on
the evolution of feathers as media for visual signalling in

the context of ontogenesis, sexual selection and ecosystem

function. An improved understanding of the taphonomy

of melanosomes, plus that of other colour-producing

mechanisms in feathers, is critical to test pioneering

reconstructions of fossil feather colour and to facilitate

future interpretations.
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