propagate away from the wells and disturbs a larger and larger volume, the probability increases that fluid pressure will encounter a larger fault and induce a larger-magnitude earthquake. The absence of earthquakes in regions above the critical pressure threshold may result from either a lack of faults or lack of well-oriented, critically stressed faults. Alternatively, fluid flow may preferentially migrate along bedding structure (Fig. 2A).

Though seven earthquakes were recorded in 2006 to 2009 near the base of the SE OK wells (30), the main swarm began ~15 km to the northeast (Fig. 5G), despite the high modeled pressure perturbation near the wells. Earthquakes in 2009 primarily occurred, within location uncertainty, near injection wells or on the nearest known faults to the northeast of the wells (fig. S9).

Focal mechanisms near the swarm onset indicate fault planes at orientations favorable to failure (19) (Fig. 2, inset B). Faults subparallel to the north-northwest–south-southeast–trending Nemaha fault would not be well oriented for failure in the regional ~N70E stress regime (25) and would require substantially larger pressure increase to fail. Recent earthquakes near the fault may be evidence for continued pressure increase. This 50-km-long segment of the Nemaha fault is capable of hosting a M7 earthquake based on earthquake scaling laws (20), and the fault zone continues for hundreds of kilometers. The increasing proximity of the earthquake swarm to the Nemaha fault presents a potential hazard for the Oklahoma City metropolitan area.

Our earthquake relocations and pore pressure models indicate that four high-rate disposal wells are capable of increasing pore pressure above the reported triggering threshold (21–23) throughout the Jones swarm and thus are capable of triggering ~20% of 2008 to 2013 central and eastern U.S. seismicity. Nearly 45% of this region's seismicity, and currently nearly 15 M > 3 earthquakes per week, may be linked to disposal of fluids generated during Oklahoma dewatering and after hydraulic fracturing, as recent Oklahoma seismicity dominantly occurs within seismic swarms in the Arbuckle Group, Hunton Group, and Mississippi Lime dewatering plays. The injection-linked seismicity near Jones occurs up to 35 km away from the disposal wells, much further than previously considered in existing criteria for induced seismicity (13). Modern, very high-rate injection wells can therefore affect regional seismicity and increase seismicity, consistent with our results. Regular measurements of reservoir pressure at a range of distances and azimuths from high-rate disposal wells could verify our model and potentially provide early indication of seismic vulnerability.

DINOSAUR EVOLUTION
A Jurassic ornithischian dinosaur from Siberia with both feathers and scales

Pascal Godefroit, 1* Sofia M. Sinitzina, 2 Danielle Dhouailly, 3 Yuri L. Bolotskiy, 4 Alexander V. Sizov, 5 Maria E. McNamara, 6,7 Michael J. Benton, 1, Paul Spagna

Middle Jurassic to Early Cretaceous deposits from northeastern China have yielded varied theropod dinosaurs bearing feathers. Filamentous integumentary structures have also been described in ornithischian dinosaurs, but whether these filaments can be regarded as part of the evolutionary lineage toward feathers remains controversial. Here we describe a new basal neornithischian dinosaur from the Jurassic of Siberia with small scales around the distal hindlimb, larger imbricated scales around the tail, monofilaments around the head and the thorax, and more complex featherlike structures around the humerus, the femur, and the fibia. The discovery of these branched integumentary structures outside theropods suggests that featherlike structures coexisted with scales and were potentially widespread among the entire dinosaur clade; feathers may thus have been present in the earliest dinosaurs.

The origin of birds is one of the most-studied diversification events in the history of life. Principal debates relate to the origin of key avian features such as wings, feathers, and flight (1–9). Numerous finds from China have revealed that diverse theropods possessed feathers and various degrees of flight capability (4–9). The identification of microuranids in non-avian theropods (10, 11) confirms that fully birdlike feathers originated within Theropoda at least 50 million years before Archaeopteryx.

But were feathers more widespread among dinosaurs? Quill-like structures have been reported in the ornithischians Psittacosaurus (12) and Tianxiong (13), but whether these were true feathers, or some other epidermal appendage, is unclear. Bristlelike epidermal appendages occur in pterosaurs, some early theropods (14), and extant mammals (“hairs”), and so the Psittacosaurus

REFERENCES AND NOTES
and its filaments might have evolved independently of the feathers of theropods. Here we report a new ornithischian dinosaur, *Kulindadromeus zabaikalicus*, with diverse epidermal appendages, including grouped filaments that we interpret as avianlike feathers. This suggests that all Dinosauria could have had feathers and that feathers arose for purposes of insulation and signaling and were only later co-opted for flight (10, 11).

The new dinosaur comes from the Kulinda locality (Cherynyshevsky District of Chita Region, southeastern Siberia, Russia; fig. S1), from the base of the Ukureyskaya Formation, dated as Middle to Late Jurassic (15). The dinosaur bones are associated with abundant, well-preserved fossils of plants, insect larvae, and freshwater crustaceans that suggest deposition in a low-energy, probably lacustrine, freshwater environment. The sequence includes tuff deposits and ignimbrites that indicate local volcanic activity (15).

The description of *Kulindadromeus zabaikalicus* (15) is based on six partial skulls and several hundred disarticulated skeletons unearthed from two neighboring monospecific bone beds. Each individual skeletal element is represented by a single morphotype, and all of the observed morphological differences can easily be explained by ontogenetic and intraspecific variation, as confirmed by the detailed study of the partial skeletons (15). Therefore, there is no indication that more than one basal ornithischian is present. Many of the bones are strongly iron-stained, suggesting partial replacement during diagenesis.

Kulindadromeus zabaikalicus is differentiated from all other dinosaurs by the following...
characters (Fig. 1, and figs. S4 to S7): maxilla with rostral ascending process much lower than caudal ascending process and maxillary fenestra larger than antorbital fenestra; jugal with notched postorbital ramus; postorbital with dorsoventrally expanded caudal ramus; dorsoventrally slender postacetabular process on ilium; and deep extensor fossae on metatarsals II to IV (15).

It was a small, 1.5-m-long bipedal herbivore, with a short skull, plant-eating teeth, elongate hindlimbs, short forelimbs, and an elongate tail (Fig. 1). Phylogenetic analysis (figs. S10 and S11) (15) recovers *Kulindadromeus* as a basal member of Neornithischia [all genasaurians more closely related to *Parasaurolophus walkeri* and the filamentous structures in *Tianyulong* (13). They more closely resemble the monofilaments in the basal coelurosaur *Sinosauropteryx* (20) and are similar to morphotype 1 in a recent evolutionary model of feathers (21).

Kulindadromeus also shows compound, non-shafted integumentary structures along the humerus and femur (Fig. 3, A to F, and fig. S9).

Fig. 2. Epidermal scales and featherlike structures of *Kulindadromeus zabaikalicus*. (A) Scales around the distal tibia and the tarsus (INREC K4/57); (B) double row of scales above the proximal part of the tail (INREC K4/94) in dorsal view; (C) close-up of the left row of caudal scales (INREC K4/117) in dorsal view; (D) partial skull (INREC K4/22) in right lateral view, with (E and F) detail of areas indicated in (D) and (E) showing filamentous structures; (G) left part of ribcage (INREC K4/33), with (H and I) detail of areas indicated in (G) and (H) showing filamentous structures.
These occur as groups of six or seven filaments that converge proximally and arise from the central regions of a basal plate. Individual filaments are 10 to 15 mm long. Those on the humerus are wider (0.2 to 0.4 mm) and straighter than those on the femur (0.1 to 0.2 mm). These groups of filaments are similar to feather morphotype 3 (~17, ~22) and resemble the down feathers of some modern chicken breeds, such as the Silkie, which are devoid of barbules (~17). The basal plates are also larger on the humerus (3 to 4 mm wide) than on the femur (2 to 3 mm); they are arranged in a hexagonal pattern, but they remain distinctly separated from each other, contrasting with the contiguous distribution of the scales on the distal forelimb, hindlimb, and tail in Kulindadromeus and also with the feathered scales that cover the tarsometatarsus of some living birds (~17). Whether the basal plates represent modified scales or calamus-like structures remains unclear and requires further investigation.

An additional integumentary morphotype occurs along the proximal part of the tibia in Kulindadromeus (Fig. 3, G to J): Clusters of six or seven ribbon-shaped elements appear more or less bundled together proximally, close to the bone surface. Each individual element is 15 to 20 mm long and 1.5 to 3 mm wide, with a dark median axis along its length (Fig. 3, H to J). Careful removal of a thin superficial carbonaceous sheet reveals the presence of ~10 thin (50 to 100 μm) internal parallel filaments within each ribbon-shaped element (Fig. 3J). This is an arrangement that has never previously been reported and that could represent a third feather-like morphotype in Kulindadromeus.

The presence of both simple and compound filamentous structures in Kulindadromeus...
Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration

Ryuta Ishimura,1* Gabor Nagy,1* Ivan Dotu,2 Huihao Zhou,2 Xi-Lei Yang,3 Paul Schimmel,3 Satoru Senju,4 Yasuharu Nishimura,4 Jeffrey H. Chuang,5 Susan L. Ackerman†

In higher eukaryotes, transfer RNAs (tRNAs) with the same anticodon are encoded by multiple nuclear genes, and little is known about how mutations in these genes affect translation and cellular homeostasis. Similarly, the surveillance systems that respond to such defects in higher eukaryotes are not clear. Here, we discover that loss of GTPBP2, a novel binding partner of the ribosome recycling protein Pelota, in mice with a mutation in a tRNA gene that is specifically expressed in the central nervous system causes ribosome stalling and widespread neurodegeneration. Our results not only define GTPBP2 as a ribosome rescue factor but also unmask the disease potential of mutations in nuclear-encoded tRNA genes.

†Howard Hughes Medical Institute and The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA. ‡The Jackson Laboratory for Genomic Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA. ¶The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. ·Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Horio 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan.

1These authors contributed equally to this work. Corresponding author. E-mail: susan.ackerman@jax.org

RNA FUNCTION

Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration

Ryuta Ishimura,1* Gabor Nagy,1* Ivan Dotu,2 Huihao Zhou,2 Xi-Lei Yang,3 Paul Schimmel,3 Satoru Senju,4 Yasuharu Nishimura,4 Jeffrey H. Chuang,5 Susan L. Ackerman†

In higher eukaryotes, transfer RNAs (tRNAs) with the same anticodon are encoded by multiple nuclear genes, and little is known about how mutations in these genes affect translation and cellular homeostasis. Similarly, the surveillance systems that respond to such defects in higher eukaryotes are not clear. Here, we discover that loss of GTPBP2, a novel binding partner of the ribosome recycling protein Pelota, in mice with a mutation in a tRNA gene that is specifically expressed in the central nervous system causes ribosome stalling and widespread neurodegeneration. Our results not only define GTPBP2 as a ribosome rescue factor but also unmask the disease potential of mutations in nuclear-encoded tRNA genes.

†Howard Hughes Medical Institute and The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA. ‡The Jackson Laboratory for Genomic Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA. ¶The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. ·Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Horio 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan.

1These authors contributed equally to this work. Corresponding author. E-mail: susan.ackerman@jax.org

REFERENCES AND NOTES

15. See the supplementary materials on Science Online.
A Jurassic ornithischian dinosaur from Siberia with both feathers and scales
Pascal Godefroit, Sofia M. Sinitsa, Danielle Dhouaïllly, Yuri L. Bolotsky, Alexander V. Sizov, Maria E. McNamara, Michael J. Benton and Paul Spagna (July 24, 2014)

Editor's Summary

Feathers, not just for the birds?

Theropod dinosaurs, thought to be the direct ancestors of birds, sported birdlike feathers. But were they the only feathery dino group? Godefroit et al. describe an early neornithischian dinosaur with both early feathers and scales. This seemingly feathery nontheropod dinosaur shows that feathers were not unique to the ancestors of birds and may even have been quite widespread.

Science, this issue p. 451