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The very labile (decay-prone), non-biomineralized, tissues of organisms are rarely fossilized. Occurrences

thereof are invaluable supplements to a body fossil record dominated by biomineralized tissues, which

alone are extremely unrepresentative of diversity in modern and ancient ecosystems. Fossil examples of

extremely labile tissues (e.g. muscle) that exhibit a high degree of morphological fidelity are almost invari-

ably replicated by inorganic compounds such as calcium phosphate. There is no consensus as to whether

such tissues can be preserved with similar morphological fidelity as organic remains, except when

enclosed inside amber. Here, we report fossilized musculature from an approximately 18 Myr old sala-

mander from lacustrine sediments of Ribesalbes, Spain. The muscle is preserved organically, in three

dimensions, and with the highest fidelity of morphological preservation yet documented from the fossil

record. Preserved ultrastructural details include myofilaments, endomysium, layering within the sarco-

lemma, and endomysial circulatory vessels infilled with blood. Slight differences between the fossil

tissues and their counterparts in extant amphibians reflect limited degradation during fossilization.

Our results provide unequivocal evidence that high-fidelity organic preservation of extremely labile tissues

is not only feasible, but likely to be common. This is supported by the discovery of similarly preserved

tissues in the Eocene Grube Messel biota.
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1. INTRODUCTION
The non-biomineralized, decay prone, tissues of organ-

isms are preserved in the fossil record either as organic

remains or via replication in authigenic minerals (Allison &

Briggs 1991; Briggs 2003). Recalcitrant (decay resist-

ant) non-biomineralized tissues, such as cuticles, are

often preserved as organic remains, and, occasionally,

retain some of their original biomolecules (Stankiewicz

et al. 1997; Briggs 1999). However, almost all unequivo-

cal examples of more labile (decay prone) metazoan

tissues, e.g. musculature, are preserved in authigenic

minerals; these replicate tissue structure with varying

degrees of fidelity (depending on the mineral phase and

the timing of mineralization relative to decay). Organic

preservation of tissues inside amber (Poinar & Hess

1982; Grimaldi et al. 1994) can result in retention of

cellular ultrastructures (Henwood 1992), but is rare and

reflects a suite of extremely unusual circumstances.

Charcoalification can preserve labile tissues, but has, to

date, been recorded only in fossil plants (Crepet et al.

1992; Edwards & Axe 2004). Debate continues over the

significance of the organically preserved structures
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recovered by Schweitzer et al. (2005) after acid dissol-

ution of samples of dinosaur bone. These structures

were interpreted first as blood vessels and osteocytes lar-

gely on the basis of their general morphological similarity

to examples of these in the extant ostrich. The fossil

structures, however, have been reinterpreted as the

remains of recent biofilms that lined, but did not infill

completely, voids inside the bone, thus generating

hollow structures with a similar geometry to blood vessels

and osteocytes (Kaye et al. 2008). Further, the robustness

of the original biochemical analyses that purported to

identify collagen peptide sequence fragments in the

fossil structures (Asara et al. 2007; Schweitzer et al.

2007) has been much debated (Asara & Schweitzer

2008; Asara et al. 2008; Buckley et al. 2008; Organ

et al. 2008; Pevzner et al. 2008; see also Schweitzer

et al. 2009). Suggestions that labile biomolecules are

likely to survive over geological time scales when organ-

isms are encapsulated within natural resins (Poinar et al.

1996) have also been questioned (Stankiewicz et al.

1998). Sulphur-rich organic remains recovered from

inside the bones of fossil frogs hosted within approximately

10 Myr old (Miocene) lacustrine sediments that crop out

near Libros, northeast Spain, were interpreted as the first

(and to date only) examples of fossilized bone marrow

(McNamara et al. 2006). Others, however, have been

more equivocal in their interpretation of these structures
This journal is q 2009 The Royal Society
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(Stokstad 2006). There is therefore no consensus as to

whether the preservation of very labile non-biomineralized

tissues as organic remains is possible other than via encap-

sulation within natural resins (amber, copal). Confirming

this is a prerequisite to any investigation of the processes

responsible, including any systematic analysis of the fate

of the original biomolecules under different diagenetic con-

ditions. Herein, we describe, to our knowledge, the first

record of organically preserved musculature including its

sedimentological context. The muscle’s gross morphology

resembles that of an extant analogue, but this, alone, is not

the basis for our conclusion. Remarkably, despite some

degradation before fossilization, diagnostic macromolecular

ultrastructural features have been retained.
2. MATERIAL AND METHODS
The fossilized musculature is from the trunk of a specimen

(Museo Nacional de Ciencias Naturales, Madrid (MNCN)

12555) of the salamander Chelotriton sp. from the Lower- to

Middle Miocene (Agustı́ et al. 1988) Ribesalbes Lagerstätte,

near Castellón de la Plana, northeast Spain. This deposit,

hosted within thermally immature, sulphur-rich oil shales

(kerogen Type I-S: atomic Sorg/C . 0.04; atomic H/C .

1.5; Sinninghe Damsté et al. 1993), yields abundant excep-

tionally preserved plants and insects. Rare amphibians are

preserved as articulated skeletons enclosed in a thin, black

carbonaceous layer that defines the outline of the soft tissues

(figure 1a). Specimen 12555 was recovered during commer-

cial mining of the oil shales at the beginning of the twentieth

century and does not appear to have been treated or prepared

prior to our analysis.

(a) Fossilized muscle tissue

Samples of muscle tissue identified under a binocular micro-

scope were picked from the specimen using sterile scalpels

and needles. For scanning electron microscopy (SEM),

samples were not prepared further; they were mounted

onto aluminium stubs using double-sided carbon tape, gold

or carbon sputter-coated, and examined with a Hitachi S-

3500N variable pressure microscope equipped with an

EDAX Genesis energy dispersive spectrometer. Sample con-

ductivity was enhanced by applying small quantities of silver

dag to carbon-coated samples. Backscattered- and secondary

electron images were produced from carbon-coated samples,

and secondary electron images from gold-coated samples.

Observations were made at an accelerating voltage of 15 kV.

For transmission electron microscopy (TEM), samples

were impregnated with TAAB EM resin in an aluminium

mould under vacuum in the following resin/ethanol mixtures,

each for 2 h: 10, 30, 50, 70, 90, 100, 100, 100 per cent resin.

Ultrathin (80–90 nm thick) microtome sections were cut

with a Drukker 2 mm 458 diamond knife, picked up on Cu

grids and allowed to dry. Selected sections were stained

with 2 per cent uranyl acetate in water for 20 min, washed

with distilled water and further stained with lead citrate

(0.01 g lead citrate in 10 ml water and 0.1 ml 10 M

NaOH) for 10 min. Grids were washed again with distilled

water, allowed to dry and examined using a JEOL

2000TEMSCAN operating at 80 kV with an objective aper-

ture of 10 mm diameter. Differences in tone (electron

contrast) in transmission electron micrographs indicate

relative differences in atomic number between features: the

darker the feature, the higher the atomic number of its
Proc. R. Soc. B (2010)
components. Contrast is calibrated automatically by the

camera detector and thus subtle differences in electron con-

trast between features may not be apparent if an extremely

electron-dense feature is in the field of view.

(b) Modern muscle tissue

Muscle tissue from the extant salamander Ambystoma

mexicanum supplied in 100 per cent ethanol (after primary

fixation in gluataraldehyde) was treated as follows: immer-

sion in osmium tetroxide (60 min), buffer (a mixture of

sodium dihydrogen phosphate and disodium hydrogen

phosphate) (10 min), 70 per cent ethanol (10 min (twice)),

90 per cent ethanol (10 min (twice)) and 100 per cent etha-

nol (20 min (twice)). For TEM, fixed and dehydrated

samples were prepared further as follows: immersion in pro-

pylene oxide (15 min (twice)), 50 : 50 propylene oxide:

TAAB EM (60 min) and 100 per cent resin (120 min at

378C). Resin impregnation was conducted under a vacuum

of 86–90 kPa using a Buehler Vacuum Impregnation Unit.

Samples were then placed in an aluminium mould with

fresh 100 per cent resin and polymerized under vacuum for

18 h at 608C. Ultrathin (80–90 nm thick) sections were

placed on Cu grids, stained with uranyl acetate and lead

citrate and examined as for the fossil material. SEM samples

were prepared and analysed as for the fossil material.
3. FOSSIL MUSCLE
Hypaxial skeletal muscle fibres are preserved immediately

adjacent to the thoracic vertebrae (figure 1b,c). As in

modern salamanders (Brainerd & Azizi 2005), the fibres

are closely and regularly spaced, parallel and stacked in

sheets separated by endomysium (figure 1d–g). Hollow

tubes with circa 3 mm thick walls orientated orthogonally

to the axis of some fibres (figure 1d, arrow) represent sec-

tions through vascular structures, probably arterioles and

venules. Each fibre is straight, unbranched, 15–25 mm

wide and exhibits a chevron-shaped pattern of elongate

cracks, one set on either side of the medial axis

(figure 1d,e). In transverse section, each fibre is square

to rectangular in outline, has concave sides and an irregu-

lar, circular to oval-shaped, central void (figure 1f ).

These voids, and the cracks, are attributed to diagenetic

shrinkage of the fibres, probably via condensation of the

cytosol. In stained transverse TEM sections, myofila-

ments are apparent as two sets of densely packed,

electron-dense, ‘spots’ (figure 2a): spots of one set are

larger (10–14 nm diameter as opposed to 5–8 nm diam-

eter) and more electron dense. The spots are sections

through thick (myosin-rich) and thin (actin-rich) myofila-

ments; the presence of both indicates the plane of

sectioning has passed through the A-band of a fibre.

The structure in the fossil material is slightly less ordered

than the regular hexagonal arrangement found in its

modern counterpart (compare figure 2a and b); the loss

of fidelity probably originated during initial, limited,

decay before fossilization. Myofibrils are not apparent in

the fossil material, even in stained sections, but this is

not unexpected. In many extant amphibians, the trunk

muscles are tonic, and the myofilaments are weakly or

not bundled into myofibrils (Gans 1981). The sarco-

lemma is typically 800–1200 nm thick, slightly greater

than in extant salamanders (650–850 nm thick) (com-

pare figure 2c,e with 2d, f ). This difference may be

http://rspb.royalsocietypublishing.org/
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Figure 1. Organically preserved musculature in a fossil salamander. (a) Chelotriton sp. (MNCN 12555) with an outline of
soft tissues defined by a carbonaceous layer. Scale bar, 10 mm. (b) Musculature in situ adjacent to vertebrae and (c) a freshly
fractured surface through a sample. Scale bar, 1 mm. (d, arrow) SEM images of muscle illustrating chevron pattern of cracks,
hollow blood vessel in transverse section and (e, arrow) separation of sarcolemma from sarcoplasm. Scale bars: (d) 100 mm and
(e) 30 mm. ( f ) Semithin transverse section through the muscle with (g) explanatory drawing, showing the arrangement of fibres

(dark grey) in parallel sheets separated by endomysium (light grey); arrow in ( f ), blood vessel in the transverse section.
( f ) Scale bar, 20 mm.
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real; alternatively, the thickness of the sarcolemma in the

fossil muscle may have increased during minor post-

mortem separation of collagen fibres (Taylor et al.

1995). Internally, the sarcolemma can be either structure-

less with a very thin, relatively electron-dense, margin

(figure 2c), or multi-layered (figure 2e); both conditions

occur in extant material (figure 2d, f ). The multi-layered

structure is more apparent where the sarcolemma has

detached from the interior of the fibre and is convoluted;

in such examples, the sarcolemma often separates further

into a series of layers (figure 2e), a characteristic of the

initial stages of its decay (Taylor et al. 1995).

Adjacent sheets of muscle fibres are separated by a thin

(2–6 mm thick) endomysium. The endomysium is often

laminated and can separate into its component layers

(figure 2g). Endomysial circulatory vessels (4–10 mm in

diameter and circular in cross section) (figure 2g) can

be filled with a friable, highly electron-dense, material

(figure 2g, inset). This infill is extremely unstable under

the electron beam and usually disintegrates during exam-

ination, producing resin-free voids. The infill occurs only
Proc. R. Soc. B (2010)
within these circulatory vessels, not other void spaces, and

has been observed in unstained sections. Collectively,

these observations confirm the infill is of biological

origin, not a diagenetic infill of void space or an artefact

of sample preparation; circulatory vessels in modern sala-

mander muscle are infilled with blood (figure 2h). The

fossil blood is structureless, and there is no evidence for

spherical features, e.g. red blood cells (most purported

fossil examples of which have been demonstrated to be

pyrite framboids, Martill & Unwin 1997). The composition

of the fossil blood is unknown; its high electron density indi-

cates that it is unlikely to be entirely carbonaceous. EDX

spectra of the musculature exhibit peaks for only C and

S. The musculature is therefore not replicated in authigenic

minerals. It is, at least primarily, the diagenetically altered

remains of the original organic tissues.
4. WIDER IMPLICATIONS
The detail revealed by TEM imaging unequivocally ident-

ifies the organic remains as fossilized musculature from

http://rspb.royalsocietypublishing.org/
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Figure 2. (a,c,e,g) TEM images of transverse sections of skeletal muscle tissue from MNCN 12555 and (b,d,f,h) corresponding
features in the extant salamander A. mexicanum. Images except (c), (e) and (g) are from stained sections. (a,b) Sarcoplasm
showing myofilaments in the transverse section at A-band. (c,d) Margin of fibre showing sarcolemma (sl) attached to sarco-

plasm (sp); inset in (d) shows local thickening of sarcolemma. (e, f ) Margin of fibres showing sarcolemma (sl) detached
from sarcoplasm (sp). (g,h) Endomysial circulatory vessels surrounded by endomysium. Inset in (g) shows electron-dense, fri-
able, solidified blood residue within the circulatory vessel. l, lumen of capillary; r, resin. Scale bars (a,b) 50 nm and 2 mm for all
other images.
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the salamander itself. This therefore confirms, for the first

time, to our knowledge, that the high-fidelity fossilization

of extremely decay-prone tissues as organic remains is not

only feasible but can occur in the absence of protective

encapsulating agents such as bone (in the case of the

bone marrow, McNamara et al. 2006) and amber.

Preservation of the musculature as a sulphur-rich

organic residue is attributed to sulphurization of organic

molecules within the tissue (McNamara et al. 2006).

Sulphurization of organic matter is a common diagenetic

phenomenon and has been documented in various car-

bonate, evaporite and siliceous ooze-dominated, marine,

and non-marine environments (Killops & Killops 2005);

this includes environmental contexts known to host

exceptional faunas (Sinninghe Damsté et al. 1993; de

las Heras et al. 2003). Further, this mode of exceptional

preservation, articulated skeletons encased in a carbon-

aceous layer that defines the body outline, characterizes

other Mesozoic and, especially, Cenozoic lacustrine-

hosted biotas from Europe and elsewhere; examples

include the Messel (Eocene, Germany) (Franzen 1990),

Enspel (Oligocene, Germany) (Toporski et al. 2002),

Bechlejovice (Oligocene, Czech Republic) (Roček 2003)

and Shiobara (Pleistocene, Japan) (Allison et al. 2008)

biotas. We therefore predict that careful examination of

specimens will confirm that high-fidelity organic preser-

vation of labile soft tissues is relatively common in the

fossil record, particularly in lacustrine settings. This is

supported by the preliminary investigation of organically

preserved tissues from several taxa from the Messel

biota (see the electronic supplementary material). Fauna

from such biotas are prime targets for the recovery of

other examples of high-fidelity, organically preserved

soft tissues, and, potentially, labile biomolecules.
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